Surface ectoderm is necessary for the morphogenesis of somites

نویسندگان

  • Kristen M. Correia
  • Ronald A. Conlon
چکیده

The paraxial mesoderm of the neck and trunk of mouse embryos undergoes extensive morphogenesis in forming somites. Paraxial mesoderm is divided into segments, it elongates along its anterior posterior axis, and its cells organize into epithelia. Experiments were performed to determine if these processes are autonomous to the mesoderm that gives rise to the somites. Presomitic mesoderm at the tailbud stage was cultured in the presence and absence of its adjacent tissues. Somite segmentation occurred in the absence of neural tube, notochord, gut and surface ectoderm, and occurred in posterior fragments in the absence of anterior presomitic mesoderm. Mesodermal expression of Dll1 and Notch1, genes with roles in segmentation, was largely independent of other tissues, consistent with autonomous segmentation. However, surface ectoderm was found to be necessary for elongation of the mesoderm along the anterior-posterior axis and for somite epithelialization. To determine if there is specificity in the interaction between ectoderm and mesoderm, ectoderm from different sources was recombined with presomitic mesoderm. Surface ectoderm from only certain parts of the embryo supported somite epithelialization and elongation. Somite epithelialization induced by ectoderm was correlated with expression of the basic-helix-loop-helix gene Paraxis in the mesoderm. This is consistent with the genetically defined requirement for Paraxis in somite epithelialization. However, trunk ectoderm was able to induce somite epithelialization in the absence of strong Paraxis expression. We conclude that somitogenesis consists of autonomous segmentation patterned by Notch signaling and nonautonomous induction of elongation and epithelialization by surface ectoderm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of limb morphogenesis in a model system.

A method for analysis of chicken limb morphogenesis was devised. This method consisted of grafting a limb ectodermal jacket containing dissociated and pelleted mesenchymal cellular components to the host somites. Different cellular components stuffed into the ectoderm could be mixed in varied ratios. After 7 days the grafts were analyzed for outgrowth. Stage 19 mesoblast cells alone when treate...

متن کامل

Afadin

Afadin is an actin filament-binding protein that binds to nectin, an immunoglobulin-like cell adhesion molecule, and is colocalized with nectin at cadherin-based cell-cell adherens junctions (AJs). To explore the function of afadin in cell-cell adhesion during embryogenesis, we generated afadin(-/-) mice and embryonic stem cells. In wild-type mice at embryonic days 6.5-8.5, afadin was highly ex...

متن کامل

Redefining the role of ectoderm in somitogenesis: a player in the formation of the fibronectin matrix of presomitic mesoderm.

The absence of ectoderm impairs somite formation in cultured presomitic mesoderm (PSM) explants, suggesting that an ectoderm-derived signal is essential for somitogenesis. Here we show in chick that the standard enzymatic treatments used for explant isolation destroy the fibronectin matrix surrounding the anterior PSM, which fails to form somites when cultured for 6 hours. By contrast, explants...

متن کامل

A radioautographic analysis of the migration and fate of cells derived from the occipital somites in the chick embryo with specific reference to the development of the hypoglossal musculature.

The migration pattern and fate of cells of the occipital somites and overlying ectoderm have been described for the chick embryo with particular reference to the development of the hypoglossal musculature. Tritium-labelled thymidine (0-5-10 /tCi per egg) was used as a cell-specific marker. Occipital somites (2-5) with overlying ectoderm were transplanted orthotopically from labelled donor embry...

متن کامل

Neural crest formation in the head of the mouse embryo as observed using a new histological technique.

A histological technique is described which results in the differential staining of neural crest cells. This is used to describe the formation and early migration of crest cells in the head of the mouse embryo. The first indications of crest formation are seen in the midbrain/anterior hindbrain at 3--4 somites where crest cells accumulate in the basal surface of the ectodermal epithelium near t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mechanisms of Development

دوره 91  شماره 

صفحات  -

تاریخ انتشار 2000